High-affinity efflux transport system for glutathione conjugates on the luminal membrane of a mouse brain capillary endothelial cell line (MBEC4).
نویسندگان
چکیده
Cumulative evidence suggests that several organic anions are excreted from the brain to the blood across the blood-brain barrier. In the present study, we carried out a kinetic investigation of the transport activity in MBEC4, an immortalized cell line established from BALB/c mouse cerebral microvessel endothelial cells. The presence of an efflux system in intact cells was examined by using monochlorobimane (MCB), which is conjugated with glutathione intracellularly to produce glutathione bimane (GS-B). The efflux of GS-B was inhibited by ATP depletion and also by 1-chloro-2, 4-dinitrobenzne, a precursor of 2,4-dinitrophenyl-S-glutathione, in a concentration-dependent manner. Using this MBEC4 monolayer, we investigated the direction of this transport activity. Although the efflux of GS-B was observed on both luminal and abluminal sides of MBEC4 monolayer, the profile differed for the two sides with respect to the concentration dependence of MCB; the analysis suggested the presence of high-affinity transport system on the luminal side. To investigate the mechanism for the transport, we examined the ATP-dependent uptake of GS-B into the membrane vesicles prepared from MBEC4. ATP-dependent uptake systems with high (Km = 35 nM) and low (Km = 14 microM) affinities were identified. These results suggested that this high-affinity transport system of glutathione conjugates is expressed on the luminal side of the blood-brain barrier and is involved in the detoxification of xenobiotics.
منابع مشابه
Characterization of efflux transport of organic anions in a mouse brain capillary endothelial cell line.
Cumulative evidence suggests that several organic anions are actively effluxed from the brain to the blood across the blood-brain barrier (BBB). We examined the possibility of the presence of primary active transporters for organic anions (multidrug resistance associated protein (MRP) and canalicular multispecific organic anion transporter (cMOAT)) on the BBB by measuring the ATP-dependent upta...
متن کاملModulation of multidrug resistance protein expression in porcine brain capillary endothelial cells in vitro.
Multidrug resistance-associated protein (MRP) is a transport system that is involved in the elimination of xenobiotics and biologically active endogenous substrates. Recently, the presence of MRP has been demonstrated in cultured brain capillary endothelial cells (BCECs). The time-dependent, functional expression of MRP in porcine BCECs was investigated to assess the value of this cell culture ...
متن کاملO 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions
KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...
متن کاملSodium transport in capillaries isolated from rat brain.
Brain capillary endothelial cells form a blood-brain barrier (BBB) that appears to play a role in fluid and ion homeostasis in brain. One important transport system that may be involved in this regulatory function is the Na+, K+-ATPase that was previously demonstrated to be present in isolated brain capillaries. The goal of the present study was to identify additional Na+ transport systems in b...
متن کاملThe 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier.
L-DOPA is transported across the blood-brain barrier (BBB) by an amino acid transporter, system L. Recently, it has been demonstrated that system L consists of two subunits, 4F2hc and either LAT1 or LAT2. 4F2hc/LAT1 and 4F2hc/LAT2 show different transport characteristics, while their distribution in the brain has not been determined. To clarify whether 4F2hc/LAT1 participates in L-DOPA transpor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 288 1 شماره
صفحات -
تاریخ انتشار 1999